New Infrared Imager Can Map Out a Person’s Blood Vessels Without Touching the Skin

New Infrared Imager Can Map Out a Person’s Blood Vessels Without Touching the Skin

Thin, Large-Area Device Converts Infrared Light Into Images

Seeing through smog and fog. Mapping out a person’s blood vessels while monitoring heart rate at the same time—without touching the person’s skin. Seeing through silicon wafers to inspect the quality and composition of electronic boards. These are just some of the capabilities of a new infrared imager developed by a team of researchers led by electrical engineers at the University of California San Diego.

The imager detects a part of the infrared spectrum called shortwave infrared light (wavelengths from 1000 to 1400 nanometers), which is right outside of the visible spectrum (400 to 700 nanometers). Shortwave infrared imaging is not to be confused with thermal imaging, which detects much longer infrared wavelengths given off by the body.

The imager works by shining shortwave infrared light on an object or area of interest, and then converting the low energy infrared light that’s reflected back to the device into shorter, higher-energy wavelengths that the human eye can see.

https://kukooo.com/household/cookware-plastics/aj-bari-jabo_i59417

https://vocus.cc/article/613a673afd89780001b56402

https://bilgorajska.pl/wydarzenie,4792,0,0,0,safdsfg.html

https://vocus.cc/article/613a666efd89780001b56226

https://blog.goo.ne.jp/cowboysvsbucs/e/2ea338d5942c5f4a81d61f65b99bab8e

https://blog.goo.ne.jp/cowboysvsbucs/e/86f58708270585a30f4e3b5b80ff8a26

https://blog.goo.ne.jp/cowboysvsbucs/e/61c638cf8ec7bf9c865130105b960967

https://www.bankier.pl/forum/temat_rtyhtjyukm,49413371.html

https://www.bankier.pl/forum/temat_henry-bucks,49413395.html

https://kukooo.com/gadgets/dvd-player/remonty-wykonczenia-elewacje-docieplenia_i59418

https://www.parti-socialiste.fr/tungtang/_streaming-now_cowboys_vs_buccaneers_game_live_dallas_cowboys_vs_tampa_bay_buccaneers_9_sep_2021_kjdxyxylc66qyn6jxdr8tq

https://www.parti-socialiste.fr/tungtang/tnfstreams_cowboys_vs_bucs_live_stream_online_buccaneers_vs_cowboys_thusrday_night_football_game_on_09_sep_2021

https://www.parti-socialiste.fr/tungtang/_livestreams_cowboys_vs_bucs_live_stream_free_how_to_watch_online_for_free

https://www.parti-socialiste.fr/tungtang/tnfstreams_reddit_cowboys_vs_buccaneers_live_stream_time_tv_info

https://www.parti-socialiste.fr/tungtang/_streaming_cowboys_vs_bucs_nfl_live_stream_how_to_watch_week_1

https://www.parti-socialiste.fr/tungtang/w_tch_cowboys_vs_buccaneers_live_stream_free_watch_buccaneers_vs_cowboys_live_streaming_reddit_2021

https://www.parti-socialiste.fr/tungtang/_cowboys_vs_buccaneers_live_stream_how_to_watch_thursday_night_football_online_for_free

https://www.parti-socialiste.fr/tungtang/free_cowboys_vs_buccaneers_live_stream_reddit

https://www.parti-socialiste.fr/tungtang/live_cowboys_vs_buccaneers_nfl_streams_reddit_free

https://www.parti-socialiste.fr/tungtang/_on_dallas_cowboys_vs_tampa_bay_buccaneers_live_stream_free

https://www.parti-socialiste.fr/tungtang/watch_dallas_cowboys_vs_tampa_bay_buccaneers_online_live

https://www.parti-socialiste.fr/tungtang/week_1_dallas_cowboys_vs_tampa_bay_buccaneers_live_stream_on_09_sep

https://www.parti-socialiste.fr/tungtang/_thursday_night_football_watch_dallas_cowboys_game_live_official_imp3huryfshkyf5agpybmw

https://www.parti-socialiste.fr/tungtang/_thursday_night_football_watch_bucs_vs_cowboys_game_live_official

https://www.parti-socialiste.fr/tungtang/_cowboys_vs_buccaneers_nfl_thursday_night_football_live_stream_reddit_2021

https://www.parti-socialiste.fr/tungtang/_nfl_streams_reddit_thursday_night_football_2021_live_stream_online

https://www.parti-socialiste.fr/tungtang/w_1_tampa_bay_buccaneers_nfl_game_2021_live_stream_online_free

https://www.parti-socialiste.fr/tungtang/_on_dallas_cowboys_nfl_football_game_live_streams_2021_tv_covarage

https://www.parti-socialiste.fr/tungtang/_official_reddit_nfl_streams_bilasport_-_buffstreams_crackstreams_vipbox

https://www.parti-socialiste.fr/tungtang/watch_reddit_nfl_free_streams_on_buffstreams_cracked_streams_online_week_1

https://www.parti-socialiste.fr/tungtang/week_1_nfl_reddit_streams_alternatives_how_to_watch_nfl_football_season_2021_live_streaming_sunday_night_football_online

https://www.parti-socialiste.fr/tungtang/_nfl_football_game_week_1_watch_reddit_nfl_streams_free_in_2021_twitter_twitch_buffstreams_and_crack-streams

https://www.parti-socialiste.fr/tungtang/_cowboys_v_buccaneers_tampa_bay_buccaneers_vs_dallas_cowboys_live-stream_free_on_09_sep_thursday_2021

https://www.parti-socialiste.fr/tungtang/_crack-bilasports_streams_cowboys_vs_buccaneers_live_stream_how_to_watch_thursday_night_football_online_for_free

“It makes invisible light visible,” said Tina Ng, a professor of electrical and computer engineering at the UC San Diego Jacobs School of Engineering.

While infrared imaging technology has been around for decades, most systems are expensive, bulky and complex, often requiring a separate camera and display. They are also typically made using inorganic semiconductors, which are costly, rigid and consist of toxic elements such as arsenic and lead.

Infrared Imager

The new infrared imager is thin and compact with a large-area display. Credit: Ning Li

The infrared imager that Ng’s team developed overcomes these issues. It combines the sensors and the display into one thin device, making it compact and simple. It is built using organic semiconductors, so it is low cost, flexible and safe to use in biomedical applications. It also provides better image resolution than some of its inorganic counterparts.

The new imager, published recently in Advanced Functional Materials, offers additional advantages. It sees more of the shortwave infrared spectrum, from 1000 to 1400 nanometers—existing similar systems often only see below 1200 nanometers. It also has one of the largest display sizes of infrared imagers to date: 2 square centimeters in area. And because the imager is fabricated using thin film processes, it is easy and inexpensive to scale up to make even larger displays.

Energizing infrared photons to visible photons

The imager is made up of multiple semiconducting layers, each hundreds of nanometers thin, stacked on top of one another. Three of these layers, each made of a different organic polymer, are the imager’s key players: a photodetector layer, an organic light-emitting diode (OLED) display layer, and an electron-blocking layer in between.

The photodetector layer absorbs shortwave infrared light (low energy photons) and then generates an electric current. This current flows to the OLED display layer, where it gets converted into a visible image (high energy photons). An intermediate layer, called the electron-blocking layer, keeps the OLED display layer from losing any current. This is what enables the device to produce a clearer image.

This process of converting low energy photons to higher energy photos is known as upconversion. What’s special here is that the upconversion process is electronic. “The advantage of this is it allows direct infrared-to-visible conversion in one thin and compact system,” said first author Ning Li, a postdoctoral researcher in Ng’s lab. “In a typical IR imaging system where upconversion is not electronic, you need a detector array to collect data, a computer to process that data, and a separate screen to display that data. This is why most existing systems are bulky and expensive.”

Another special feature is that the imager is efficient at providing both optical and electronic readouts. “This makes it multifunctional,” said Li. For example, when the researchers shined infrared light on the back of a subject’s hand, the imager provided a clear picture of the subject’s blood vessels while recording the subject’s heart rate.

The researchers also used their infrared imager to see through smog and a silicon wafer. In one demonstration, they placed a photomask patterned with “EXIT” in a small chamber filled with smog. In another, they placed a photomask patterned with “UCSD” behind a silicon wafer. Infrared light penetrates through both smog and silicon, making it possible for the imager to see the letters in these demonstrations. This would be useful for applications such as helping autonomous cars see in bad weather and inspecting silicon chips for defects.

The researchers are now working on improving the imager’s efficiency.

david Mike

Leave a Reply

Your email address will not be published. Required fields are marked *